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In this paper we introduce a discontinuous finite element methad.
In our approach, it is possible to combine the advantages of finite
element and finite difference methods. The main ingredients are
numerical flux approximation and local orthogonal basis functions.
The scheme is defined on arbitrary triangulations and two different
arror indicators are derived. Especially the second one is closely
connected to our approach and able to handle arbitrary varying
flow directions, Nrunerical resuls are given for boundary value prob-
lems in two dimensions. They demonstrate the performance of the
scheme, combined with the two error indicators. & 1995 Academic
Press, Inc.

{. INTRODUCTION

The transport equation arises in many areas of physics, such
as reactor analysis, induction of electrons in solids, and the
propagation of photons in stellar and planctary atmospheres.
All these applications lead o equations of the form

B Vu(x, 8) + a(xmx, 8) = L:a(x. B. Mu(x, 7 dy
+f(x,8) forxe )

w(x, 8) =10

(LD
forve ",

wherc o is the transfer kernel describing the distribution of

particles arising from scattering, fission, and capturing events,
oris the total cross section, and §* ;= {x € R?:{x| = 1}. Further,
2 is in general a domain in B and F. := {x € aQ2: 8- n(0)
< 4 its inflow boundary, with n(x) denoting the outer unit
normal 10 {0 at v, The unknown function v = u(x, 8) is the
density ol particles, moving in the direction 3.

The numerical approach is to approximate the integral in
(1.1} by a sum, using an angular quadrature scheme with N
evaluation points. So we have to solve N transport equations
of the form introduced in Section 2. Therelore, one should use
an adaptive high resolution scheme for solving these transport
equations to obtain a {ast and accurate algorithm. These de-
mands can be satisfied by a discontinuous finite element
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method, DFEM. This method is based on a local approach,
which means that the solution is allowed to be discontinuous
across interelement boundaries. The DFEM is already widely
used for equations of the form (1.1). It was anaiyzed first by
Lesaint and Raviart [8] and more recently by Johnson and
Pitkiiranta [ 7], who obtained improved error estimates. Laler,
Richier | 1] developed a new approach to DFEM by using two
types ol trangles in his analysis. It a note on convergence
Pelerson [9] proved optimality of these error estimates for
quasi-uniform meshes,

Our work was mainly stimulated by the paper of Cockburn
ef al. [3] in which nonoscillating finite difference methods are
used in combination with finite element methods. To obtain
physically relevant solutions of initial--boundary value prob-
lems associated with hyperbolic conservation laws, they pro-
posed a special local projection, which does not destroy the
high-order accuracy of their scheme. In contrast to those, our
objective is to solve stationary convection—diffusion equations
occurring in the context of (1.1), Nevertheless, we can use their
finite element discretization combined with a numerical flux
approximation. Additionally, an effective adaptation of the tri-
angulation is taken into consideration, better resolving the local
structures of such kinds of problems. Not only does it drastically
reduce the number of degrees of freedom, but also it permits
us to estimate the reliability of the solution by the computed
error bounds,

Our variant of DFEM is characterized by the fact that we
can involve the above-mentioned ideas while keeping the nice
features of finite clement methods, such as easy handling of
complex geometries and boundary conditions. We can increase
the accuracy focally rather than using wider stencils as in finile
difference mcthods. Another important aspect of this approach
is the possibility of transmitting the well established finite dif-
ference methodology for these equations to irregular grids and
higher dimensions. The method is explicit, so no large linear
systems need to be solved, and it is able to work on very
irregular grids. This is necessary, since during the solution
process the grid will be adapted to the solution.

Two error indicators are derived and compared. The first
uses a doal problem in a standard way. The second is based
on the ease of increasing locally the degree of the approximating
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polynomials in the context of DFEM. For this, we choose a
basis of orthogonal polynomials on each triangle. Therefore,
we can split the solution into its constant and linear parts. The
magnitude of the linear part is taken as an error indicator. These
motivations are reflected in the quite different behavior of the
indicators in our applications.

The outline of the paper is as follows. In the second section
we introduce the model equation and our scheme. It is shown
that it fits well between finite difference and finite element
methods. In the third section an error estimation is given in the
case of a constant flow field vector 8. For an arbitrary vector
3 we introduce the idea of local orthogonal basis functions and
the corresponding error indicator. The last section includes
some numerical experiments that are merely done to show the
performance of the different indicators and for comparison with
published calculations, e.g., [11]. Finally, a conclusion and
some remarks on the discretization of convection—diffusion
equations are given.

2, THE SCALAR LINEAR TRANSPORT EQUATION AND
THE DERIVATION OF THE SCHEME

We consider the first-order hyperbolic equation

B8-Vu+ou=f infl,

2.)
u=g onl_

as a model of Eq. (1.1). Here, (2 is a bounded polygonal domain
in R The flow field vector 8: {} — R? is a prescribed smooth
vector field, o i1s a bounded measurabie function on €, fis in
Ly{£}), and g, the given inflow condition, is in L(I'_).

Let 7, = {T} be a quasi-uniform partition of the domain ()
into triangular elements T, which means that all angles of T €
T, are bounded from below by a positive constant. We denote
by P.(T) the space of polynomials of degree <k on T € T,,.
The DFEM for (2.1) is derived from the weak formulation on
each T € T,. We replace the exact solution u by its possibly
discontinuous approximation u, with u,|; € P.(7). Finally,
integration by parts yields for v,|; € PAT)

[V B+ v dx + [_wwinds
2.2)
= L fo, dx.

Since u, is a discontinuous piecewise polynomial of degree x
over the triangulation 7, it is not defined exactly on &7. There
are many possible choices for these variables at the boundaries.
In the following we will use this indeterminacy to adopt the
successful nonoscillatory methodology, see, e.g., [6], from the
finite difference method. To this end we replace the flux func-
tion 1,83 - 1 by some numerical average flux A(u, ui™). With
the following definitions for an x € a7,

= limu(x)  for x' & interior of T

x—x

W= lim wy(x)  for x* € exterior of T,

X=X

we can yse a Lipschitz continuous *‘menotone’” flux as given
in [3]). There, Cockburn and his co-workers first proposed this
idea for the solution of hyperbolic conservation laws in connec-
tion with the FEM, In the special case o = V * 8 we get exactly
the steady state version of their scheme taken without any local
projection of the solution. The function A(-, -) satisfies the
consistency relation h(x, v) = uf3-n, is nondecreasing in its
first argument, and is nonincreasing in its second argument.
Scheme (2.2) now reads:

For given #§* = g on I'_, find w,|; € P(T), such that for
cach triangle T € T,

[ =5 (B + oo dx+ [ i, ds
2.3)
= JT Jundx, Vo, € PT).

A possible choice for k(:, -) is the Engquist~Osher two-point
monotone flux, which for an arbitrary function fl(u) is de-
fined by

HE%a, b) 1= J " min('(s), 0) ds

(2.4)
+ j D max(fl'(s), 0) ds + f1(0).

The next result gives an interesting connection to the DFEM
intraduced by Reed and Hill [10]. First, we recall their formula-
tion of the method: For given w; = gon I'_, find u,|; € PAT)
such that foreach T € T,

f (B Vuy + oup)vy dx + JW () — wi)vy|B - nlds

(2.5)
_ L Jondx, Yv, € PAT),

with a7_ = {x € 6T: 8- n(x) < 0} and ui = lim u,(x + ).

e—0"

LEMMA 2.1, The method (2.5) is equivalent to (2.3) with
the numerical flux approximation (2.4).

Progf. Using

LGy, dm et g exl gt .
Lrh ™, Y, ds JaT(uh min(B - n, 0)

+ M max(8 - n, ONv, ds
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= Ian W', |8 - nlds — L[ us v, |8 - nlds,

with T, = {x € aT: 8- n(x) = 0} and the reformulations

”jimlan =u;, uy = uy
the lemma follows from integration by parts of the left-hand
side of (2.3). |

Remark 2.2. With the above lemma 2.1, the DFEM, as
analyzed in [7], is a special case of the generalized discontinu-
ous Galerkin method (2.3). An important aspect of this approach
is its ability to generalize the well-established finite difference
schemes to very irregular grids.

Remark 2.3.  Unfortunately, the DFEM loses accuracy in a
fairly large region near steep fronts of the solution, due to
oscillations in the approximation. To overcome this difficuity
the values of w5, #i™ in (2.3) must be limited or computed with
an adaptive stencil. In the finite difference theory of the last
10 years numerical methods like ENO (essentially nonoscilla-
tory) or MUSCL (monotone upstream schemes for conservation
laws) schemes were developed, which suppress such oscilla-
tions very successfully. Our numerical experiments in Section
4 have shown that (2.5) is not monotone. The remedy proposed
by us for our simple numerical flux is to adapt the grid. To
this end, the error indicators in Section 3 are developed.

It has been shown in [8] that for constant B3 an ordering of
the triangles {T\, T», ...} exists, such that the finite element
approximation can be computed in an explicit way. The same
was done in {3] for |8-n} > O for all sides of the triangles in
T,. The ordering is also possible if div(8) = 0; see [13]. With
such an ordering of the triangles it is possible to compute w,
successively on each T € T, starting at the inflow boundary
I'_ where w, = g is given. For these cases, transport problems
ltke (2.1) are connected to explicit methods in a natural way.

For further analysis, we introduce for each triangle T a finite
element space V), defined by

Vi = {v, € Li{Q}):v,|r € PAT), T € T,}.

Note that any choice of the degree of freedom of the approxi-
mate solution is allowed in this formulation; cf. [5]. Summing
over all 7 € 7, in (2.3}, we arrive at the following equivalent
formulation of (2.3): Find u, € V, such that

B(uhs Un‘l) = (ﬂ Uil)s

Yy, € V,, (2.6)

where

Bw,v):= > {(w, =V -(Bv) + av)r + (h, V)yr}

TeT,

2.7)

Here (-, ")y, (-, *Y;r denote the L,(T), Ly(a7) inner products. In
the special case h = A™ we get

Biw, v) = B,(w, v) — fr gv*|B nl ds (2.8)
with
B\(w,v)
= J W(=V - (8v) + ov) dx (2.9)
rerr /T .

+[ we —vgalds+ [ wulgends

and T, = {x € 82:8-n > 0}; cf. [7]. All the interelement

boundaries are denoted by T, := (U BT)\BQ. Of course,

TE'I‘,I
we can replace u, by the exact solution & in (2.6); i.e., we have
the consistency relation

B](u — Hy, U;,) = 0, U, < V,u,. (210)

3. ERROR ESTIMATES

3.1. Constant Unit Flow Field Vector 3

For constant unit 8 Johnson and Pitkidranta [7] obtained
for the DFEM (2.5) various stability and convergence results,
including an L;-error estimate of the form

e = 2loq = C- B2 fat] 10 (3.1)
This error estimate is based on the stability inequality
sl + ltsllon = € Flloa + lgllor.), (3.2)

where |-}, 5 is a mesh-dependent seminorm which controls the
derivative B+ Vu, and the jumps of u,8 - n across the interele-
ment boundaries. This stability result is, of course, also true
for (2.3}, (2.4). In what follows, we will present another proof
of the convergence result (3.1), using only a special part of |-, 4.

¢ — wid|B - nlox, + 1B oy = litalns.  (3.3)

We start our derivation by considering the dual problem -
to (2.1),
-BVo+ogp=6 in{},
(3.4)
¢=0 onT,,
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with @ € L,({}). In the next step we seek an approximate
solution ¢, € V, such that

Biw, @) = (O, v,), v, €V, (3.5)
where B, is as in (2.9). The function ¢, is the discontinuous
Galerkin solution of (3.4}). Now, we introduce the local L,-
projection & € V, of the exact solution « by

L (u—dwdc=0, vEP(TET,. (6

Applying the Bramble—Hilbert lemma [2] and a standard esti-
mate of norms over boundaries, see, e.g., [1}, we get
lie = dlllor = Cheul iz,

““ - ﬂ"u‘ar = Chx+[r2luix+l,T'
With the choice @ = v, = (x, — &) € V, and recalling (2.10),

llay — @0 = Buu — &, @) = ( — i, =BV, + o,

+ [, - G - @|Bnl ds
+ L (u— @) ¢r|B-nlds.

Since 8- V¢, € V, the corresponding term is eliminated by
(3.6). With the formal substitutions u, ;= ¢, 8 := —8,I"_:=
Ty, f:= O and the setting g = 0, the stability result (3.2)
remains true for the problem (3.4). It follows by the Cauchy-
Schwarz inequality that

it — @llon = (CA2 + Collollanh® e g
Using the triangle inequality we finally obtain

e = wallog = liu — dlloq + oo — illon

- x+ 112 w1 3.7
(C R+ Clfloflma + DRt 10

This completes the proof. |}

Remark 3.1.  The rate of convergence guaranteed by result
(3.7) is less than the optimal rate « + 1 by 4. Peterson [9]
presented a numerical example which shows that this order
cannot be improved within the class of quasi-uniform meshes,
not even for smooth exact solution «. On the other hand, for
a non-smooth solution # the above error estimate is useless;
e.g., if u is discontinuous it may be that |luf, = oo

An obvious idea for improving u, during an adaptive process
is the equidistribution of all tocal element errors. To give (3.7)
a practical meaning, an approximation D5 'u, of the Sobolev

seminorm |u. 7 is needed. This can be done by using the
numerical solution u,. We refer the interested reader to [4].
For a local error indicator we can use

flse = unlio.r == Clh<*2
(3.8)

+ (lofler + DEDE Y, TET,.

3.2. Arbitrary Flow Field Vector 3

The situation becomes more complicated if 3 is an arbitrary
vector function, not necessarily constant or with vanishing di-
vergence. In this case neither stability nor convergence results
are known. Nevertheless, we can use the flexibility of our
scheme and increase the degree of the approximating polynomi-
als locally to derive an efficient error indicator. To achieve this,
we have to choose the polynomials appropriately. Performing
the adaptation of the gnd in this way, we avoid the above-
mentioned drawback of the DFEM.

For the implementation of (2.6} we use a local orthogonal
basis in P(T), {vl, v, ., vl}, I € N, such that v] has support
in T and

@leh=C8. C#0,ij=0,1,.,1L
This orthogonality is achieved by choosing an orthogonal basis
over the standard triangle A 1= {(§{ M ER0= & n=1,
£+ =1}

vh=2, uvi=6£—2, vi=2V6(E+2n— 1),

For simplicity of presentation, we restrict ourselves to the case
K = 1,1.e., to linear polynomials. Using an affine--linear map-
ping F:A — T € T, we get in this case

vh = 30s(£0n, o) nlx, X))y = 1,

, (3.9)
vl = VITlI2vd(&x, ) nia, x2)), i 1,2,
where [T siands for the area of T. The choice of constants will
become clear below, If we define the degrees of freedom as

y—
4=

J’Tuv,f,dx, TET, m=0,12, (3.10)

withy =1iftm=0andy =2ifm=
approximation of the exact solution in ¥, by

1, 2, we get the

2
w(x) = > uvli(x), xET,TET,. (3.11)
m=0

We remark that ¢ is an approximation of the average of the

exact solution u in 7. Moreover, by our construction (3.9), the
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basis functions vf, i = 1, 2, vanish at the midpeint x™ of the
triangle T; i.e., for k = 1,

ty (™Y = 10, (3.12)
The discontinucus piecewise linear approximation i, can be
locally split into a linear part out of §,(T) and a constant part
out of Py(T). From the orthogonality of these two parts, ie.,
P = P, P 8§, it follows that the greater the local gradients
of the solution u the greater the part in §; of the numerical
approximation u,. This part tells us how difficult it is to approxi-
mate the function « in the corresponding region. Indeed, assum-
ing that the fully linear FE-approximation is better than the
constant one, i.e.,

e — wor = e — wflos (3.13)
it is reasonable to expect that
e = 6Pllor ~ llts — M7
2 (3.14)
= || 2 urIoll . TET.
m=] 0T

In other words, under the assumption (3.13), the solution part
lying in S, can be used as an indicator of the size of the actual
error [l — u®||gr. Clearly, the derivation described above is
applicable for arbitrary / € [, too.

Remark 3.2. Another motivation for the above proposed
local error indicator was given by one of the reviewers. He
noted that since u, is locally affine, we have that, for (x, ¥} in
the triangle 7,

wilx, ¥y = uf + (x — xp, ¥ — ¥5) - Vi,

where (x3, yg) is the barycenter of the triangle 7. Thus, applying
an inverse estimate for linear finite elements, we get

floe = 6lor ~ [¥utaiater, ~ Vel
This relation shows that the error indicator is able to realize such
regions associated with high local variations of the solution u.

Since we are equipped with local error indicators &, j = 1,
.., 1, n = number of elements, the obvious idea is to improve
the finite element solution to a given tolerance eps in an adaptive
process through equidistribution of all element errors. We
search for a refinement strategy,

Refine T; if § > cut.

In order to achieve this, we determine “‘cut’ by

"

cur =

=l

g

7

with some constant ¢ which guarantees a desirable rate of
refinement. In practical computations 30-50% of the elements
are usually refined.

4. NUMERICAL RESULTS

The numerical experiments are mainly done to demonstrate
the different behavior of the two error indicators (3.8) and
(3.14) and the high accuracy of the method. These are also
documented by other authors, e.g., [11]. This makes a direct
comparison of the results possible. To the first example, the
transportation of a steep front along a straight line, both error
indicators are applied. The behavior during the refinement pro-
cess and the final grids, which are necessary to obtain a good
approximation of the exact sciution with our algorithm, are
compared. The second example is a transportation of the inflow
condition along circular lines around the origin. This problem
is known in the literature as a very hard one, because the
streamlines are bent and the distance between the inflow and
the outflow boundaries is relatively long. The divergence of
the corresponding flow field in both examples is zero, and the
triangies can be ordered, obiaining an explicit algorithm.

4.1Y. Example I: Transportation glong a Line

The first problem we consider is Eq. 2.3 on Q0 = ((: 1) X
(0; 1) with ¢ = 0, f = 0, and the flow direction 8 = (1.0; 1.0}).
The inflow boundaries are the lines {{x, y) € B> x = 0} and
{(x, y) &€ R*:y = 0} with the boundary condition

0 ifga=y

X .
g(x,y) = “PG;?IFT@?) f&>y>4%

i else.

Thus, the steep front in the boundary condition does not coin-
cide with the initial grid lines. The calculations are done on
the basis of the adaptive FEM program KASKADE imple-
mented by [12]. 1t should be mentioned that in nearly all applica-
tions published, the grid lines are chosen to represent the ‘‘near-
discontinuity” of g(x, y) at the inflow boundary (see Fig. 1).

The first picture shows the intermediate grid, produced by
the first error indicator, left, and the second indicator, right.
They are applied in such a way that in each refinement step
no more than $ of the coarser grid triangles are refined. It can
be seen that both indicators try to resolve the inflow condition.
The difference occurs at the outflow boundary. Through the
explicit solution process, the flow field is calculated along 8
and the greatest amount of error is at the outflow part of 3{).
The derivation of the first error indicator started from the adjoint
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F1G. 1. Intermediate grids for Example 1.

problem (3.4) to (2.1); in particular 8 is replaced by —f,
the opposite flow direction. So it takes this rough solution
as a reference. This is also reflected by the solution after
three refinement steps, which is shown in Fig. 2. The solution
is plotted so that each triangle is colored with respect to
uf. We divided the range from —1 to 2 into 16 equidistant
gray scales to include possible over- and undershoots. For
each grid point we have as many solution values as triangles
containing this point. The solution is neither interpolated nor
smoothed 1o show the high resolution of the scheme. On
the left grid, produced by indicator (3.8), the algorithm is
not able to resolve the outflow in the same manner as on
the grid generated by (3.14). In Fig. 3 the final grids after
five refinement steps, which were necessary to resolve the
critical line y = x + {5, are shown. The left grid, corresponding
to (3.8), 1s one refinement level deeper than the right one
for the reasons discussed above.

4.2, Example 2: Circulation of a Pulse

In this case Eq. (2.1) is given on the domain {) = {(—1.0;
1.0y X (—1.0; 1.OAI with the variable flow direction 8 = (y,
—x). Here o = 0, f = 0, and the boundary condition on the
inflow part is set to zero with the exception of I' := {(x; y):
x=0/N0=y= -1} Here we use

-

F1G. 3. Final grids.

0 0 =my>-0
gly):= 1 if—01=y=-05
0 if-05>y=-10

The exact solution is a transport of this *‘rectangular’ inflow
condition along circular lines around the origin to the outflow
boundary, which is located opposite U, In this case, the indicator
(3.8) has no theoretical justification, at least in our derivation,
in Section 3. So it should not be applied here. These considera-
tions are enforced by the numerical results.

Figure 4 shows the grid produced by (3.14) and the solution
after six refinement steps. It can be seen that the algorithm
begins to resolve the discontinuous solution starting from the
inflow boundary along the streamlines. It is also interesting to
see that the longer the streamlines are the more difficuit it is
to resolve the discontinuity. Figure 5 shows the final grid with
about 8000 triangles, obtained after 12 refinements. The L,
error is approximately 10% with an overshoot of 1.1 and an
undershoot of —0.03. The time required to obtain this solution
was about 3 min on a Sun Sparc-1 workstation. To compare
this result, we mention [5]. There nearly 20,000 triangles are
needed to follow a smooth inflow condition transported along
grid lines on an equidistant grid. In spite of our remark on the
error (3.8) made above, we tried it on the same problem since
local smoothness is guaranteed. The result is shown in Fig. 6.

FIG. 2. Solution of Example 1 on intermediate grids.

FIG. 4. Intermediate grid and solution for Example 2,
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FIG. 5. Final grid and solution for Example 2.

The indicator was not able to adapt the grd along the stream-
lines. After four refinement steps all further refinement takes
place near the inflow region of (). The grid consists of more
than 10,000 triangles and gives an evidently worse solution
than in Fig. 5.

5. CONCLUDING REMARKS

We have proposed a discontinuous finite element method for
the transport equation. The method is of arbitrary order and can
be applied in an explicit manner on quite irregular grids. Through
its derivation the scheme can combine the nice features of finite
element methods with successful techniques of finite difference
schemes. Furthermore, it provides a very useful and robust error
indicator. Our analysis and numerical results suggest that it can
be used in a rather efficient manner in general situations.

One extension of the method should be to stationary convec-
tion-dominated convection—diffusion equations. In our ap-
proach, we approximate the solution by linear functions over
each triangle. So we have to solve 3 X 3 linear systems locally.
Since the solution is possibly discontinuous across interelement
boundaries, the Laplacian operator cannot be discretized in a
suitable manner. A remedy is to split the equation into two
transport equations, as these are discretized by the mixed finite
element method. However, this means that we have to solve
15 X 15 linear systems on each triangle—a significant increase
in numerical work, which does not seem practical to us. This
topic constitutes the subject of ongoing work.

FIG. 6. Grid and solution for Example 2 with indicator (3.14).
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